Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data
نویسندگان
چکیده
This paper presents a novel two phase method that combines one class support vector machine classifiers classifiers using combination rules to quantitatively assess the degree of abnormality at various heights during individual aircraft descents and also over the whole descent. Whilst classifiers have been combined before in the literature with success, it is the first time they have been applied to the problem of analysing the act of descending of commercial jet aircraft. The method is tested on artificial Gaussian data and flight data from an industrial partner, Flight Data Services Ltd, the world’s leading flight data analysis provider, with promising results.
منابع مشابه
A Two Phase Method to Detect Abnormalities in Aircraft Flight Data and to Rank Their Impact on Individual Flights
A two phase novelty detection approach to locating abnormalities in the descent phase of aircraft flight data is presented. It has the ability to model normal time series data by analysing snapshots at chosen heights in the descent, weight individual abnormalities and quantitatively assess the overall level of abnormality of a flight during the descent to a given runway. The method models norma...
متن کاملDetecting Abnormalities in Aircraft Flight Data and Ranking their Impact on the Flight
To the best of the author’s knowledge, this is one of the first times that a large quantity of flight data has been studied in order to improve safety. A two phase novelty detection approach to locating abnormalities in the descent phase of aircraft flight data is presented. It has the ability to model normal time series data by analysing snapshots at chosen heights in the descent, weight indiv...
متن کاملAn approach to rank efficient DMUs in DEA based on combining Manhattan and infinity norms
In many applications, discrimination among decision making units (DMUs) is a problematic technical task procedure to decision makers in data envelopment analysis (DEA). The DEA models unable to discriminate between extremely efficient DMUs. Hence, there is a growing interest in improving discrimination power in DEA yet. The aim of this paper is ranking extreme efficient DMUs in DEA based on exp...
متن کاملاستفاده از یادگیری همبستگی منفی در بهبود کارایی ترکیب شبکه های عصبی
This paper investigates the effect of diversity caused by Negative Correlation Learning(NCL) in the combination of neural classifiers and presents an efficient way to improve combining performance. Decision Templates and Averaging, as two non-trainable combining methods and Stacked Generalization as a trainable combiner are investigated in our experiments . Utilizing NCL for diversifying the ba...
متن کاملEffective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 12 شماره
صفحات -
تاریخ انتشار 2012